简体 | 繁体 | English
资讯中心
行业新闻

UPS无变压器技术解析(二)

四、无变压器UPS的性能优势

这里的讨论仅限于是否带输出变压器这两种电路结构的不同而带来的设备性能的差异,不包括下列与产品研制定型和生产水平有关的因素而造成的性能差别:

•电路研制定型水平:与技术人员技术水平、经验和定型流程管理有关;

•器件选用差别:与电路定型、成本控制和质量管理流程有关;

•产品质量和稳定性:取绝于生产工艺水平,与人员技术水平、生产和质量控制流程有关;

•产品功能差别:包括是否有并机功能、是否模块化、系统管理与通讯功能、电池配置和管理水平、电路控制差别

(CPU还是DSP)、软启动、冷启动、物理结构与可维护性水平等;这些差别与厂商决策人员对设备的研发方向、市场定位、商业取向、成本控制等指道思想有直接的关系。

无变压器UPS的性能优势是针对带输出变压器UPS由于自身的电路结构而不可能达到的固有的缺点相对而言,包括成本、效率、重量和体积等,当然还包括在设备电气性能方面的改进和提高。这些对当前社会提倡的降低能源消耗、节省资源消耗、绿色产品是至关重要的。

1、高输入功率因数低输入电流失真度

为了完成系统升压功能,PFC整流环节成为“高频机”的重要组成部分和必要条件,但它同时又把UPS输入功率因数提高到理想的数值:0.99,把输入电流总谐波失真度THDI降低到5%以下,所以说输入功率因数高、电流失真度低是“高频机”的主要优点之一,这不仅消除了UPS对电网的谐波污染,它还可明显地降低前端设备和线缆的容量。表1为两种结构UPS的总电流失真度、总电流有效值和线缆配置要求。

表1:UPS的总电流失真度、总电流有效值和线缆配置要求比较表

从表1中数据可以看出,由于带输出变压器UPS(例如12脉冲整流)的输入功率因数低,输入电流谐波大,其输入电流明显地大于无输出变压器的UPS,增加量在27%左右。前端变压器、断路器和线缆的规格都要相应的增大,其中线缆的截面要增加接近一倍。特别是当输入端有备用柴油发电机时,由于谐波电流和12脉冲移相变压器、无源滤波器的影响,UPS

与油机容量的配比从无输出变压器UPS的1:1.3增大到1:2~4。

表1是输出满负载时的数据,当实际应用中负载减轻时,12脉冲(+11次无源滤波)的输入功率因数会明显地减小,输入电流谐波成分明显增大(见图18),对电网污染和要求系统前端设备容量增大的影响也就更严重。



[#page#]

2、工作效率高

无变压器UPS的整机效率之所以比带变压器UPS的效率高一些,主要来自两个方面,一是去掉了变压器的损耗,大功率变压器的损耗通常在2%左右;二是系统直流母线电压的提高减少电路工作损耗0.5%左右,如果排除电路设计和生产水平差异因素,电路结构的变化可使整机工作效率提高2.5%左右。表2是一组典型的测试数据。



表2:UPS工作效率比较表(按照输出功率因数0.9计算)

整机效率的提高,不仅可有效的降低能源损耗,还意味着设备本身损耗小,以500KVA的UPS的满载效率相比,无输出变压器UPS的效率提高了2.0%,就相当于机内减少了10KW的发热量。这对提高设备运行的可靠性和降低对环境的要求是有利的。

表2数据仅仅考虑了设备本身的效率的提高,如果把因输入功率因数的提高,而使输入设备(滤波器、开关、线缆等)容量和损耗的降低,以及12脉冲整流时的输入变压器的损耗计算在内的话,那么无变压器UPS对整个系统效率的贡献应超过4%。

值得注意的是,在实际使用中,特别是在(1+1)冗余并机和双总线的配置系统中,UPS的实际输出负载率只有30-40%,这时的UPS的工作效率更有实际意义。在这方面无输出变压器UPS同样显示了它的优势,如图19所示。

从图19可看出,在25%至100%负载范围内,工作效率基本都恒定的保持在94%以上。



3、重量和体积

数据中心基础设施是一项费用昂贵的固定资产投资,机房内设备对承重的要求和占用空间越来越受到人们的重视。同时,重量轻体积小的设备还可以减少对运输和安装难度的要求,当然在这方面费用的降低也是可观的。

表3给出了两种结构UPS在功率密度、体积和重量等方面的比较数据。



表3:UPS功率密度、体积和重量比较表

从表3具体数据可以看出,与带输出变压器UPS相比,无输出变压器UPS在功率密度、占地面积、重量等方面的贡献是:

功率密度(kW/mā)可提高40%左右;

占地面积(mā)可减少25%左右;

重量减少50-80%。

[#page#]

4、成本

与带输出变压器UPS相比,无输出变压器UPS去掉的环节包括:输出隔离变压器;输入12脉冲移相变压器及11次无源滤波器。所以无输出变压器的UPS可降低成本是不言而喻的事实。讨论成本时,应考虑以下四个方面:

•生产和购置成本;

•能源运行成本(工作效率高,包括空调费用的降低);

•占地少、承重要求小和运输安装成本;

•资源浪费成本。

第四点实际上是很重要的,为了减少资源浪费,以半导体代替铜和钢铁资源早已成为工业和电子设备发展的趋势,是具有重大经济意义和社会意义的基本策略。

5、对电性能指标的改进

无输出变压器UPS的各项电性能指标绝大多数都相当于带输出变压器UPS,而有些指标却显示出无输出变压器UPS更优越的性能。除以上讲到的输入功率因数、工作效率、体积重量和成本外,以下指标也有明显地改善:

(1)输入电压范围更宽:带输出变压器UPS对于适应输入电压±15%的变化已很不易,而无输出变压器UPS可在25-30%范围内正常工作,不仅表现出对电网很强的适应能力,还可延长电池的使用寿命。

(2)输出能力强:这体现在两个方面,一是输出半桥逆变器三相独立输出功率,提高了三相负载不平衡的适应能力;二是去掉了工频变压器,逆变器工作频率又较高,输出滤波环节阻抗更小,所以输出动态性能更好,负载阶跃从100到0%或从0到100%变化时,输出电压变化都可限制在±2%,并在20-40毫秒内返回到±1%的容限范围以内。

五、无输出变压器UPS可输出的功率等级和可靠性问题

尽管无输出变压器UPS的电路技术已经很成熟,但能否形成工业化产品,输出功率能达到多大,可靠性水平如何,却与器件水平和性能有直接的关系。

1、无输出变压器UPS可输出的功率等级

下面以500KVA无输出变压器UPS为例,看它对开关功率器件IGBT的耐压和工作电流有什么样的要求。

根据图14可知,在UPS直流母线电压为稳定的±400V的情况下,每个桥臂的一支IGBT导通时,另一支截止的IGBT承受的电压将是800Vdc。

IGBT的工作电流可根据输出功率和直流母线的最低电压计算出来。

在无输出变压器UPS中,以输出半桥逆变器对IGBT的性能要求最高,图20表示了半桥逆变器中各种电流参数的关系。



逆变器输出功率:500KVA;

单相输出功率:500KVA/3=166.7KVA;

单相输出满负载电流有效值:166.7KVA/220V=757.75A;

在无输出变压器UPS中,前级PFC整流是稳定的±400V,但是当市电停电而转入电池放电时,就要考虑电池放电下限电压(-11.25%额定电压),所以逆变器单相输出满负载电流有效值应该是:757.75A×(1+0.1125)=843A;

逆变器工作在正弦脉宽调制(SPWM)状态下,假定在输出电流峰值期间最大的占空比为4:1,则IGBT工作峰值电流是:843A×1.414×1.20=1430.4A,在工作频率5-15KHZ情况下,峰值电流的宽度为0.15ms~0.05ms.

[#page#]

选用器件时,通常的做法是,在可能的最大的耐压和电流值基础上再增加50%的安全余量,即器件耐压(VCES):

800V×1.5=1200V

器件输出电流有效值能力:843A×1.5=1264.5A

器件输出电流峰值能力:1430.4A×1.5=2145.6A(0.15ms~0.05ms)

考虑到工作频率和价格等因素,选用器件时常常是用低容量的器件进行并联,这时存在并联均流的问题,所选并联器件应降容5%使用,也就是说,做500KVA无输出变压器UPS时所选用的IGBT并联后的总输出电流有效值和峰值电流应大于:

器件输出有效值能力:1264.5A/0.95=1331A

器件输出峰值能力:2145.6A/0.95=2258.52(0.15ms-0.05ms)

把以上推算结果列表在表4中。

表4:500KVA无输出变压器UPS输出逆变器对IGBT器件的要求


就目前器件水平而言,满足上述要求的IGBT器件有多种型号和规格,再考虑IGBT并联工作,可选择的余地就更大了。

表5是日本富士公司的IGBT(2MBI450U4J-120-50)的主要性能参数。

表5:2MBI450U4J-120-50的主要参数


在使用表5数据设计电路参数时,以下考虑是符合实际情况的:

(1)连续工作电流可理解为PWM工作时的输出电流有效值,即正弦电流最大值可达到600A×1.414=848.4A(TC=25ºC)和450A×1.414=636.3A(TC=80ºC);

(2)当逆变器工作在PWM模式时,IGBT管中的峰值电流是有效值×1.414(峰值系数)×1.25(假定电流峰值时占空比为4:1,宽度为0.15ms-0.05ms)=1.767倍。而表中峰值电流(1ms)可达到连续工作电流的2倍。所以用有效(连续)值是不影响器件的安全性的。

(3)考虑到设备管壳温度通常控制在<70ºC,所以可认为连续电流可达到500A,峰值电流>900A。设计时,用三只并联总有效值=500A×3×0.95(并联降容)=1425A,峰值电流>900A×3×0.95=2565;

把设计要求和选用器件的实际最大输出能里比较一下,如表6所示。

表6:设计要求和实际最大输出能力


上面设计举例选用的是富士公司的IGBT(2MBI450U4J-120-50),实际上满足和高于上述要求的器件很多,而且有些管子的电流容量也远大于本例所用的数值,管子组装也有单管、单桥臂、6管集成等形式。

总的结论是,当前的IGBT功率开关管的输出能力和电器性能使无输出变压器UPS的输出能力达到400-500KVA是不存在问题的。

[#page#]

2、关于无输出变压器UPS工作可靠性的讨论

设备的可靠性与多种因素有关,包括:电路研制定型水平、技术人员技术水平和经验、器件选用差别、生产工艺水平、质量管理流程等。电路结构变化有个技术成熟的过程,当然还包括所选用的器件性能和可靠性对新电路结构的适应能力。所以说电路结构的变化对设备可靠性是有影响的,影响大小最终取决于两个因素:电路技术成熟程度和器件水平。

(1)、技术成熟是毋庸置疑的

无变压器UPS采用的新技术主要有两点:一是AC/DC高频整流(PFC)技术,二是输出半桥逆变技术。这两项技术产生由来已久,已成为电力电子设备的经典技术,应用也非常广泛,所以技术成熟程度是毋庸置疑的。虽然把这两项技术集成起来用于无变压器UPS中仅是最近十年的事情、因电路定型水平和参数选择的差异也可能存在设备可靠性问题,但出现可靠性的根本原因却不是电路结构和新技术的应用造成的。

(2)、当前器件性能水平完全能够满足新电路结构提出的更高要求

在无变压器UPS中,对器件性能要求高的环节主要是半桥式逆变器,而关键的参数又是功率开关器件IGBT的耐压(Vces)和输出电流(有效值和峰值)能力,从表4、表5和表6可以看出,当前的IGBT的输出能力可以完全满足400-500KVA的大功率无输出变压器UPS。

值得注意的是,在无变压器UPS的输出半桥逆变电路中,输出电压是由±400V直流母线电压直接形成的,输入电流有效值等于输出电流有效值。

而传统的带输出变压器UPS是通过输出变压器升压形成的,在升压比为1:1.9或1:1.78(见本文第二节第2点和图8)时,同时考虑三角型/星型接法输出电流有效值是输入有效值的1.73倍,所以全桥逆变器输入电流有效值是输出电流有效值的1.9/1.73=1.1(或1.78/1.73=1.03倍)倍。

数据说明,对同样输出功率的UPS,无输出变压器UPS对IGBT的电流输出能力的要求并不比比传统的带输出变压器UPS高。也就是说,从IGBT的电流输出能力来看,能做多大功率的带输出变压器UPS,就可以做到多大输出功率的无输出变压器UPS。

与带输出变压器UPS相比,无输出变压器UPS的输出逆变器对IGBT的耐压提出了更高的要求。在带输出变压器UPS的输出

全桥逆变器中,IGBT的耐压就是直流母线电压,一般在400多伏,而在无输出变压器UPS的输出半桥逆变器中,直流母线电压是±400V,要求IGBT的耐压要大于800V。虽然当前的器件耐压1200V已不成问题,但此要求不仅仅是静态耐压问题,更严重的是IGBT的开关电压变化率(dv/dt)和开关损耗问题,因而这是电路设计和器件选择时必须重视和解决的问题。

(3)、输出隔直流问题

从图14和图15可以看出,由于控制环节故障使一个IGBT连续导通时,或在一个IGBT或二极管短路的情况下,400V直流母线电压会直接输出到负载端(此时电感变成阻抗很小的导线)。单相负载输入整流后的直流母线额定电压是311V,考虑负载输入允许的+15%的上限,直流母线额定电压是357V,并联在整流电路输出端的滤波电容耐压通常是400V。当UPS发生这种故障时输出直流电压会接近400V,滤波电容和DC/DC变换器都会因输入电压过高而受到影响。

出现这种情况在理论上是有可能的。然而,如果出现这一危险情况,即使缺少了专门的直流分量检测电路(例如,检测电路故障或参数飘移等),也可以根据从另一个IGBT收到的驱动信号得知,直流电压可能发生短路,从而立即终止逆变器的工作,同时断开逆变器与后面负载的连接。通常逆变器的输出端配备有一个静态旁路开关,它可在逆变器停止工作时迅速将负载切换到旁路市电供电,以保证负载供电的持续进行。

逆变器保护和转旁路供电的动作时间很短,可在输出电压上升过程中完成,因而不会对负载安全造成影响。在大量设备的实际运行中,这种故障几乎没有出现过。

[#page#]

(4)、无输出变压器UPS的可靠性指标

如果不知道平均故障间隔时间MTBF,或者厂商提供的MTBF数据是不可信的,那么可用UPS的效率和输出能力各项指标来衡量它的可靠性,这些指标包括整机工作效率、输出过载能力、输出电流峰值系数、启动负载时输出电流浪涌系数和输出功率因数等。

以下是已推向市场的500KVA无输出变压器UPS的可量化的可靠性指标:

输出功率因数能力:0.9;

逆变器短路能力:150ms:2.5-3 In(输出400 V)

逆变器过载能力:125%In:10分钟;135%In:1 分钟;150% In:30秒

额定电压下的峰值因数:≥3:1

动态性能:±2%,从0到100%或从100到0%的负载阶跃变化效率:94.5%(50到100%负载率)

这些数据说明,无输出变压器UPS的输出能力和可靠性指标与传统带输出变压器UPS一样,都达到了很高的水平。可靠性已再不是无输出变压器UPS设备的关键问题。

六、结论

图21定性的表达了本文论述的观点和内容。



1,随着电路技术和半导体器件的发展和创新,UPS电路技术经历了由多输出变压器到单输出变压器再到0输出变压器的变化过程。反映了去掉输出变压器是UPS电路技术进步的必然趋势。

2,定性的表达了无变压器UPS在效率、体积、重量、输入功率因数等指标的优势。

3,人们最关心的是可靠性问题。事实上在UPS产品推出的初期,带输出变压器的UPS的可靠性也是不高的,一般连续几千小时不发生故障就算可靠了。所以在讨论一个产品是否可靠时,关键是使用者对这个产品可靠性要求的期望值是多大。

下面的例子或许可以说明这一问题:马车与飞机相比,谁都知道马车的安全性永远比飞机高。但是,当今的社会人们还是选择了飞机,难道是人们为了舒适和效率而不顾生命安全吗?不是的,人们所以选择飞机是因为飞机的安全系数已经超过了人们对安全要求的期望值。

当前的器件和电路技术决定了带输出变压器UPS和不带输出变压器UPS的可靠性都达到了很高的水平,都超过了人们的期望值,尽管我们不能说不带输出变压器UPS的可靠性比带输出变压器UPS的可靠性还高,但我们有充分的根据说,不带输出变压器UPS的可靠性已经不是问题,而它在效率、体积、重量、输入功率因数等方面的优势却代表着UPS技术的发展趋势。